Physics Lecture 21 - Speed L oss from Wheel Bumps

Introduction

If you go to the website forum called “PWD Racing”, | have been honored to moderate a forum topic there called
“Pinewood Derby Physics’. Some recent discussions on this topic may be found (need to log into the forum first)
at the website:http://pwdracing.proboards91.com/ website. Here a question is posed, namely:

“Isit better to have added weight | aterally distributed or tightly concentrated along the centerline of the car? One camp
argueslateral distribution providesbetter ‘ stability’ . Opposite camp arguesincreased lateral distributionincreasesroll
inertiaand costs time when wheels ride up and over track debris.”

Thestahility argument isonethat doesn’t apply here—at | east under the assumption that the PWD bodiesare perfectly
rigid and not flexible. The force on the individual axle/wheel bore surfaces may vary with mass distribution but the
overall effect on speed isindependent of the distribution of mass within the confines of the rigid body (as shown in
Lecture 11). Also, wheel alignment accuracy and “rail riding” techniques do not necessarily depend on main body
width if the wheel struts from a narrow body are fabricated properly. Only air drag will change with frontal area.

But the second part of the question is something that needs to be investigated and can indeed be analyzed with
physics. The analysisis straightforward. We will deal with 4 situations:

Case 1. Off center whed - (a) Wide body and (b) Narrow body
Case 2: Sharp bump on track - (a) Wide body and (b) Narrow body

Fundamentals of Rigid Body Motion
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Figure 1 - The Standard Car (wide body) of Figure 2 on a rotating hoop.
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In Figure 1 wearelooking at 4 positions of the rear view of aPWD car that isbeing rotated on ahoop of diameter h and
negligible mass. The car has africtionless rod inserted in alengthwise hole front to back in the body through the center
of mass(CM) position. Therod isattached to the hoop. In a, asthe hoop rotates, the car remainsleve, rather likethe seats
onaferriswhedl. No net energy isexpended, meaning no net work isdone, asthe car islifted to height h and then returned
toitsinitial h=0 starting position. In theb scenario, the car isglued to the lengthwise CM rod and asthe hoop rotates 360°
the car has made one compl ete revol ution about its CM axis as shown in thelower right of thefigure. Although theinitial
and final configurationsin a and b are exactly the same, rotationa energy E,, = % | ;0% has been expended in case b.
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Figure 1 thusillustrates these two very fundamental conceptsin rigid body motion:

1) The motion of any rigid body may be resolved into two independent motions. These are the translational motion
of the CM and the rotational motion around the CM. Sometimesthisisreferred to as*motion of and about the CM..”
Trandational motionisthat where every point intherigid body follows parallel trgjectories, either straight or curved.

2) The change in kinetic energy of a point mass in a gravitationa field, without air drag or other frictional effects, is
completely determined by theinitial and final positions of the mass. The CM qualifies as a point mass. For any motion
inagravitationa field, if the CM ends up at the same height asit started, no matter what path was travelled in between,
thereisno net changein either its kinetic or potential energy. What happens is that there is a free exchange between
potential and kinetic energy at the “in between” positions such that their sum remains always constant.
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Figure 2 - The Standard Car with a left rear wheel bump problem. The Rear View off-center tilt is greatly exaggerated
Figur e 2 showswhat is defined as a Standard Car made by simply cutting the Cub’ skit block in half, adding weight
just behind the center, and attaching 4 wheels such that the | ft front does not touch the track. We will first write the
equationsthat govern the car’ s dynamics and then examine speed losses from two problems with the | eft rear wheel.
One problem is an out-of-round left rear wheel and another isa“bump” over which a perfect left rear wheel passes.
The results do not depend on car whedl base. If thereisa“bump” or an off-center rear wheel on the same side asthe
dominant front whedl, the body, being rigid, will still tilt approximately the same.

Notethat the CM isdlightly towards the rear, such rear weighting being common for most cars. In therear weighting
case afront wheel being off-center will not tilt the whole body to one side, but rather will raise/l ower the whole front
of the car. Thiswill cause somerotation of the car body around an axis through the CM and perpendicular to the side
of the body. The rotation anglewill however be considerable less than the sidetilt rotation angle shown at the lower
right of Figure 2. Thereforewewill neglect the much smaller front wheel rotation on the body of arear weighted car.



Energy Laws

The approach to the problem will usethe conservation of energy laws. Thetotal energy, dueto acertain starting ramp
height y = h of the center of mass of the car above the finish line level, isall potential and is given by

E, = Mgh (1)
Here M is the mass of the car, g is the acceleration of gravity, and E; is the potential energy. After the start, this
potential energy is all converted into kinetic energy E, on the straight level run to the finish, thus at the finish line
wherey = 0 we have

_ 1my2
E( = EMV 2

Actually, one could look at it thisway. Anywhere in a gravitational field, we have the total car energy E; as

E; = Ep + E¢= Mgy + -Mv? = constant 3)
So when v = 0 at the starting CM height y = h we have

E; = Ep= Mgh = constant (4)
And when we have the height y unchanging at areference valuey = 0 we have

E; = Ex= % Mv? = constant (Note all these constants have the same val ue) (5)

Thus, since two quantities that equal the same quantity must equal each cther, the energy at the start must equal the
energy at the finish (wheel/axle friction, air drag, and wheel moment of inertia are assumed negligible). Therefore

IMv2 = Mgh (6)
v = 4/2gh @)

Thisrather simple equation is very useful for determining race car velocity.

All the above energy istrandational (because we neglect the small wheel rotational energy). However, if awheel is
out-of-round, the body can be twisted around an axis parallel to the direction of travel. For example, in Figure 2we
have awheel of radius R, wherein the bore is off center by a small amount AR,,. In the lower right we see that the
wheel can rotate the body by some angle a as the car rolls down the track. This rotational energy Exis given by

Eg = ;IBco2 (8)

In (8), Iz isthe moment of inertiaof the body around alongitudinal axisthrough its CM and o isthe angular velocity
of the rotation.

The approach hereisto calculate (8) and useit to reduce the amount of energy (5) so that the overall energy remains
constant. But as we can see from (6) and (7), this means alower v. Thiswill be calculated |ater.

First, we will ook at the dynamics of the wheel bumps so we can deduce the angular velocity o. In (9) below, Aa
is the maximum angle change and At is the time corresponding to that angle change

Ao
o = —
At ©)



Case 1(a) - Out-of -Round (off - Center) Wheel

Figure 3 - The motion of a point off center on a rolling wheel describes a trochoid (red line).

Figure 3 shows awhedl rolling to theright at velocity v. The bore hole is offset an amount AR,,. Asthe whee! rolls
the bore hole describesthe trochoid curve showninred. Itissimilar to the cycloid curve formed by apoint ontherim
of the rolling wheel but it is a much shallower curve. Herethe AR, offset is exaggerated to 30% of the radius for
clarity. We can approximate the red line at the left by the blue straight line over the distances shown. The red line
curvature does not change much at the very top of the trochoid so the blueline only extends over 1/4 rotation. Asone
can see from the figure, the rolling distance (and thetime At) is slightly longer when the wheel bore is raising the
near body side compared to when is dropping it below its level position. The total rolling distance when either
increasing or when decreasing the angle a. is

AX = g(ZRW - AR,) (10)

However, even alarge AR, could be like 0.010" and the wheel diameter 2 R, isabout 1.20". So the effect onthe Aa
wewill consider will usually belessthan 1%. Thus, we can neglect AR, in (10) and get for arolling distance and time
for an o increase (or a decrease),

™R

Vv

At =

AX
~ (11)

Theanglechangeina forthisAtisA o, andis, inradian measure ( 2z radians = 360°), to agood approximation given
by itstangent, which issimply the “rise over run”. Therun, asseenin Figurel, isthedistanced = 2.25" and therise
isof course 2AR,,. So we have from (9)

Ao 2VAR,  2VAR,

"At dax  dwR, (12)
From (7) we can substitute for v giving
2AR,/2gh
= M (13)
dnR,,

Therotational energy from one “bump” is thus from (8)
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(14)

The moment of inertia of the rectangular block of sidesa,b,c, of mass m, when being rotated around its longitudinal
CM axisis shown in the index of many engineering texts as

1
lp = Zm(b? + ¢? (15)
The final expression for the rotational energy for one “bump” istherefore, from (14)

2AR,, 2
E, = 1—12m(b2 + c%gh(%) (16)
W

Now let us consider just the straight horizontal run section. We can see from Figure 2 that every time the wheel
rotates once there is both arotation of the body mass up above horizonta followed by arotation of the body mass
below horizontal Don’t worry about gravity effectsonthe CM if it moves up and down some during the bump—just
like explained in Figure 1 this intermediate motion does not use energy. Suppose the coasting distanceislength 1.
Then the wheel does N rotations where N is given by the coasting length divided by the whedl circumference.

I

" 7R, (17)
So for the 2N “twists” in distance | we have an associated kinetic energy of body rotation as
N 2AR,,\?
E., = ==m(b? + c?gh
R 12 (b%+ e dnR, (18)
Thetotal energy at the finish is now still equal to the total starting energy Mgh so that.
1 2
Eg + EMVZ = Mgh (19)
The new slower velocity v, at the finish and resulting time t, can be obtained from (19) as
2E
v, = ,|2gh - —& (20)
2 9 M
t, = !
2E 21
2gh - —R (21)
M
t - —  wheretisthetimewith nowhes bumping, i.e., E; = 0 (22)

v2gh

Using (18) in (20) and setting up aspreadsheet solution for thetimes, one can get thetimedifferencet - t, at thefinish
line as the out-of-round offset is AR, varied. The time loss can be converted to an equivalent distance at the finish
by multiplying by v. A graph will be presented later after we consider next a discrete bump on the track.



Case 2 - Normal Well-Centered Round Wheel Rolls Over Obstacle
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Figure 4 - The motion of the axle caused by a sharp bump on a rolling wheel.

In Figur e 3we show the case where anormal wheel twiststhe body by rolling over abump. In this casethe axle/bore
holetracesacircular arc segment of height R, as a deviation from an otherwise straight trajectory. Again, we get the
time for the deflection from Ax, the distance traveled during the deflection. The formula for the length Ax may be
found at the math world website http://mathworld.wolfram.com/CircularSegment.html . It is

AX = 2\/ARW(2RW - AR,) (23)
The angular velocity may be calculated similar to the last case as

Ao _ VAR VARy
©=—7= = (22)

AL dAX 2d /AR, (2R, ~ ARy)

Thetotal body rotational energy may be obtained as before from (16). Of course the number of bumps, (later we will
use N; to denote this number), must be estimated from the track surface condition. An uncleaned track might have
for example 20 transverse brush bristles, each of typical diameter 0.005".

The time difference between a clean and uncleaned track may then be found similar to equations (18) through (23).
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Parameter Table

Table 1 shows parameter values [Table 1 - Parameters used in various calculations
used in the preceding formulas to _ ]
calculate finish differences in Parameter symbol | VAUe | Units | Value ) Units
fractions of an inch asafunction of (Eng) | (Eng) | (cgs) | (cgs)
ARy, Body length a 7.00 in | 17.78 | cm
Thecalculation resultsarefor a 32- Body height b 0.656 in 1.67 cm
ft track which has a 16 ft horizontal
runwith thefinish line 2 ft from the Body width c 1.75& in | 4¥d& |
end. This gives a 14 ft coasting 1.00 2.54
distance. Ramp height to CM h | 4700 | in |11938| cm
Theramp height to the center of the | Tijjt gistance hypotenuse | d 2.25 in | 5715 | cm
car (which is also the CM for the
cars shown) is a fairly typical 47 Whesel radius Ry 0.5975 in 1518 cm
inches.

Offset or bump height AR, varies in varies cm
The wheels weigh about 10 grams | i 7ontal run length I 14 ft | 42672 | cm
for the 3 touching and the raised
front wheel is counted as part of the |Coast velocity (no friction
body mass of 131.75 g. or wheel bumps) v 119 mph | 483.72"| cm/s
Notice that even with weights Car mass 5.00 oz | 14175 9
concentrated at the body center, the Body mass 466 oz 13175 9
moment of inertia for twisting the : -
body around a long edge is not | Body moment of inertia | 248 & 5
affected as long as the weights | (Forc=1.75& 1.00") B i i 101 | 9°M
uniformly traversethewholewidth.
Example of a Narrow Body

c=1.00"

Figure5 - This car is identical to the Fig. 2 car except here the body is only 1.00" wide with more but
shorter pieces of lead worm. Also the wheels/axles are supported on light but strong wood struts (eg.
basswood) with the same spacing as before.



Calculation Results

Figure 6 shows the resultsfor Case 1 . L ecture 22 will present measurements on out-of-round amounts for stock Cub
Scout whedls. They range from 0.003" to 0.013". In the former case the difference at the finish line is only a few
thousandths of an inch which would not show up on atimer. Full scale (0.25") on thegraph isonly about 0.0012 seconds.
It should be mentioned that these effects are for the coasting run only, and asimilar effect on theramp isestimated to add
another 25% to finish line difference. These results are for ashorter 14 ft coast typical of a 32 ft track, so scale up the
finish line distances proportionally for longer horizontal runs.
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Figure 7 showswhat it would cost at the finish line for adirty track sprinkled with up to 22 crosswise brush bristles or
other roughnessthat would cause up to 22 rear wheel bumpings. Small 0.002" high bumpsare not too much of aproblem,
but with awide body and 0.005" high bumps, 20 bumps could cost you about two-tenths of aninch at thefinishline. Note
an unsanded tread mold mark 0.005" high could give 45 bumps on the 14 ft coast and cost about %2 at the finish.

Figure 7 - CASE 2 - SHARP BUMP
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